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The magnetosphere of a compact stellar object with an accretion disc is considered. Using the method of conformal mapping, 
the shapes of the magnetosphere and the accretion disc and, also, the configuration of the magnetic field within the limits of the 
magnetosphere are obtained in a self-consistent manner in the approximation of ideal magnetohydrodynamics. The dependence 
of the solution on the parameters is investigated. The proposed model is related to neutron stars (magnetars, in particular) and 
white dwarfs. © 2004 Elsevier Ltd. All rights reserved. 

The formation of a compact object is the final stage in the evolution of a star in which the nuclear 
reactions have already been completed and the stellar matter starts to be compressed (collapses) under 
the action of gravitational forces [1]. As a result, a star of sufficiently small mass becomes a white dwarf, 
that is, an object, the equilibrium of which is ensured by the equality of the gravitational forces and 
the forces due to the pressure of the degenerate electron gas. The maximum value of the mass of a 
white dwarf (the Chandrasekhar limit) is about 1.46 times the mass of the Sun. If the star has no sources 
of internal energy and its mass exceeds the Chandrasekhar limit, it will collapse until the atomic nuclei 
come into contact and a gigantic atomic nucleus develops with a density of the order of 1014 g/cm 3 and 
a size of approximately 10 km. This is a neutron star [2]. 

The combination of large mass and small dimensions leads to the fact that a strong gravitational field 
surrounds a compact star, which is capable of capturing matter from the interstellar medium or from 
a conventional star situated close to it (the companion in the pair). In some cases, matter, approaching 
a compact star, follows the magnetic field lines and is directed to the poles, where the gravitational 
energy of the matter is transformed into X-ray radiation. However, by no means all of the observed 
data can be successfully explained by this scenario. In particular, it has been shown that, if the matter 
captured by the gravitational field possesses a sufficiently large rotational moment, then it twists around 
the compact object, forming a rotating annular disc which is called an accretion disc (AD) [3, 4]. The 
dashed lines F in Fig. 1 schematically depict its sections. Up to the present time, a large number of 
different models of the processes occurring in the surroundings of such stars have been proposed [5]. 
However, the mechanisms of accretion will not be considered in this paper; our aim is to investigate 
the magnetic field of the star-accretion disc (AD) system. 

The existence of strong magnetic fields is the second special feature of compact objects. The field 
12 strength on a neutron star reaches a value of - 10 Gauss. In recent years, data have appeared on young 

neutron stars with magnetic field strengths of 1015 Gauss, which have acquired the name magnetars [6, 
7]. Such a strong field exerts an enormous effect on the motion of the plasma close to the star. 

Furthermore, it is important to note that the AD itself possesses an intrinsic magnetic field which also 
penetrates a certain domain on both sides of the AD, forming a corona (C in Fig. 1) [18-10]. The domain 
of the space around the star, occupied by the magnetic field of the compact star and the corona of the 
AD, is called the magnetosphere and its boundary is called the magnetopause (S in Fig. 1). 

The investigation of the magnetosphere of compact stars (its shape, dimensions, configuration and 
the magnitude of the field within it) is one of the current problems in astrophysics. Many publications 
indicate that it is, in fact, the magnetic field which is responsible for the different phenomena observed 
in compact stars, such as X-ray emission and the ejection of matter [7-12]. Observations show that, in 
a number of cases, the X-ray emission comes from domains located above the internal part of the AD, 
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that is, from domains where interaction occurs between the field of the star and the field of the AD 
[13-17]. A knowledge of the magnitude of the field in different parts of the magnetosphere and the 
internal radius of the AD enables one to obtain reliable quantitative estimates of the liberation of energy 
in the corona of the AD, and a knowledge of the characteristic dimensions of the magnetosphere can 
help in explaining the distinctive features of the periodic emission from compact stars. 

The theory of functions of a complex variable (see [18-21], etc.) has been used for a long time to 
solve two-dimensional problems in cosmic magnetohydrodynamics. In particular, an example has been 
given of the solution of problems involving the flow around bodies which have a magnetic field and the 
flow of a conducting gas, and the problem of the shape of the Earth's magnetosphere has also been 
solved [22-24]. The problem of the configuration of the magnetic field close to an accreting compact 
star possessing a multipolar magnetic moment [25] and of a star possessing a dipole magnetic moment, 
without taking account of the external boundary of the magnetosphere and in the approximation of a 
planar AD, has been considered [26]: The shape of a magnetosphere with a planar AD when there is 
an external boundary has been calculated in [27]. The question of the shape of an AD has been 
investigated in [28, 29]. An exact solution for the shape of a magnetosphere without an AD with an 
arbitrary exponential pressure distribution, and also the shape of the magnetosphere of a star which is 
rotating under hypersonic conditions has been found [211 . The configuration of the magnetic field in 
the magnetosphere of a star without an AD has been investigated [30]. 

The problem of the magnetosphere of a compact object which possesses a dipole magnetic moment 
is considered below for the case when there is a disc accretion. The plasma surrounding the magneto- 
sphere is characterized by a pressure p = P0 = const and a high magnetic Reynolds number. The 
mathematical formulation of the problem is given in Section 1, and the method for solving it in Section 
2. The shape of the magnetopause and the shape of the AD are calculated for an arbitrary angle of 
inclination ~g of the magnetic axis of the star to the plane of the AD and also the configuration of the 
magnetic field within the limits of the magnetosphere. The dependence of the solution obtained on 

~,the input parameters is analysed in Section 3. Certain limiting cases are considered which reduce to 
analytical solutions, which are already known, and the results are compared with the estimates of other 
authors obtained on the basis of observed dat a . 

1. F O R M U L A T I O N  OF THE P R O B L E M  

The existence of a strong magnetic field and a comparatively rarefied plasma is found to be a common 
feature in the space around compact objects. Here, the magnetic force predominates over the other 
forces: the pressure gradient, the inertial force, the gravitational force, etc. The strong field approximation 
[31] is therefore applicable in the treatment of such problems: the solutions of the equations of 
magnetohydrodynamics are sought in the form of series containing small parameters, such as the pressure 
gradient to the magnetic gradient ratio, etc. The solution for the magnetic field is force-free or potential 
in the zeroth order with respect to the small parameters. 

In the formulation of the problem being considered, a highly conducting plasma flows around a certain 
"empty" region of space. This region of space can be said to be empty in the following sense: the magnetic 
field enclosed in it is so strong that it compensates itself in the plasma as in a vacuum, that is, it can be 
calculated in the potential approximation. Furthermore, we shall assume that the interface S between 
the plasma flow and the domain being considered is determined by the equality of the magnetic and 
gas pressures. 

Thus, the physical picture can be described by the following mathematical model. A compact star is 
simulated by a point dipole with a moment 
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m = m e  '~¢ (1.1) 

where ~ is the angle between the direction of the axis of the dipole and the plane of the AD far from 
the star, where the position of the AD is determined by the condition for the flow of matter from the 
star-companion. The magnetic field is potential, that is, it is described by the equations 

divB = 0, rotB = 0 (1.2) 

In the magnetopause S, the magnetic pressure is balanced by the gas pressure 

B2/(8rt)ls = p (1.3) 

Outside the magnetosphere, B = 0, and the equations of conventional gas dynamics are applicable. 
We will assume that the field of the star does not penetrate either through the boundary S or through 
the AD F, that is, 

Bnts, r = 0 (1.4) 

We will assume that the magnitude of the magnetic moment m = m0, the angle ~ of inclination of 
the dipole to the plane of the AD and the values of the gas pressure are given. It is required to find 
the shape of the magnetopause S, the shape of the AD F and, also, the magnetic field B within the 
limits of the magnetosphere. 

It is also assumed that the magnetic pressure on the two sides of the AD is balanced, that is, the 
quantity ] B I does not change on passing across the AD. There is one further parameter characterizing 
the formulation of the problem and these are the magnetic field flows, departing from both sides of 
the AD to infinity. In order to understand the origin of these flows, it can be imagined that the 
configuration of the magnetic field being studied arose as the result of the arrival of an ideally conducting 
layer, which represents the AD, from infinity. In the three-dimensional formulation, there is an aperture 
at the centre of the AD, inside which the star is located. In the two-dimensional formulation, there is 
also an aperture which is the space between the left and right-hand parts of the AD. According to 
condition (1.4), the magnetic field does not intersect the AD but a non-zero magnetic flux can pass 
through the aperture in the AD. 

2. S O L U T I O N  OF THE P R O B L E M  

The essence of the method proposed earlier [22, 24] for solving problems with a previously unknown 
boundary is as follows. For any fixed position of the boundary S, the solution of Eqs (1.2) with conditions 
(1.1) and (1.4) is unique, and condition (1.3) is therefore sufficient to determine the shape of S. 

We will consider the plane case 

B = (Bx(x, y), By(X, y), O) 

Suppose z = x + iy is the complex plane. It is then convenient to describe the field using the potential 
F(z), which is an analytic function associated with the vector B by the relation [31] 

B = B x + iBy = - i ( d F / ( d z ) ) *  (2.1) 

The asterisk denotes the complex conjugate and the field lines are the level lines of the real part of the 
potential, that is, they are determined from the condition 

ReF(z) = const (2.2) 

We will assume that there is a conformal mapping of the domain occupied by a magnetosphere with 
an unknown boundary S in the z plane onto a certain known simple domain with a specified boundary 
S' in the auxiliary plane w = u + iv. It is required here that the mapping w(z) should transfer the origin 
of the coordinates z = 0 into the origin of the coordinates w = 0 and that the angle of inclination of 
the dipole should be preserved. Then, on constructing the potential F(w),  which is created by the dipole 
m in the plane w such that the boundary S' is a field line, and knowing the dependence w = w(z), it is 
possible to obtain the magnetic field vector and, consequently, the distribution of the field lines in the 
z plane using formulae (2.1) and (2.2) (Fig. 2). Hence, in order to solve problem (1.1)-(1.4), it is necessary 
to construct the potential F(w) and the mapping w(z). 
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We shall make use of the dimensionless variables which are obtained by dividing the dimensional 
quantities: the magnetic moment m, the pressure p, the magnetic field B and the distances x and y, by 
too, Po, Bo = p~/2 and L0 = m~/3 p~1/6 respectively. 

We will choose the unit circle as the auxiliary domain in the w plane. The required potential then 
has the form 

i{x °O I " ieit~ F(w)  = iQ l n W - e  + ln  w - e  i(n- + ie-'Vw + - -  (2.3) 
~, we  zc~- 1 - we  z(~-cO + 1 w 

Here Q is the "magnetic mass" [24], a quantity which characterizes the intrinsic magnetic field of the 
AD. On changing to dimensional variables, it is necessary to multiply by the dimensional quantity 

1/3 1/3 Q0 = p0 m0 ; c~ is the free parameters of the problem such that the arcs (-c~, c0, (~ - a, ~ + c~) of a 
unit circle in the w plane are converted under the mapping into the right and left-hand branches of the 
AD in the z plane while the arcs (o~, rc - cz) and (re + c~, 2x - a) in the w plane correspond to the 
magnetopause in the z plane. Note that the actual magnetic field of the AD has an exceedingly complex 
structure [8-10]. Since the aim of this paper is to calculate the parameters of the magnetosphere as a 
whole, we will confine ourselves to taking account of the large scale scale magnetic field of the AD, 
characterizing it by means of a single parameter Q and not going into its fine structure. 

Condition (1.3) gives the ordinary differential equation for finding the real part x(q0) of the function 
of the mapping for the magnetopause. Here, q0 is the argument of a point in the w plane. The equation 
was solved numerically using the Runge-Kutta method. In order to calculate the shape of the magneto- 
pause, it is still necessary to find the imaginary part of the mapping, that is, the functiony(q0). We will 
use the fact that the mapping is conformal, that is, the function z(w)  is analytic. Consequently, its real 
and imaginary parts are harmonically conjugate functions. Using the expansion of x(q0) in a Fourier 
series and taking the harmonically conjugate series, we findy(q)) for the magnetopause. Thus, the external 
boundary of the magnetosphere has been constructed. 

We will now determine the position of the AD, that is, we will find the functiony(q0) on that part of 
the circle I w I = 1 which corresponds to the AD. In the simplest formulation of the problem [25], the 
AD is replaced by an infinitesimally thin layer which separates the counter directed field lines. If the 
layer is fixed and the forces acting on its two sides are balanced, then the equality 

js+l--IB-I 

holds at each point of the layer, where the plus and minus signs correspond to the upper and lower 
edges of the cuts F of the complex z plane. 

We will now consider the arc (-a,  t~) in the auxiliary w plane which corresponds to the right-hand 
branch of the AD. We denote the point of an arc corresponding to the internal boundary of the AD 
by 8r. It follows from what has been said that the modulus of the field B as a function of the angle tp 
in the w plane has an extremum at the point 8r. On constructing the relation B = B(ei~), where q0 e 
(-c~, ~), using the potential (2.3) and relations (2.1), we find the point 8,.. 

The arc (8r, a) is mapped onto the upper side of the AD and the arc (at, -t~) is mapped onto the 
lower side. Consequently, a function g(q0) must exist which maps the interval (8,., ix) onto the interval 
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(8~, -o 0 such that 

that is 

icp z( eig(cp)) z(e ) =  (2.4) 

IB(e%l = ]B(e'~(%l 

This last equality, written using relations (2.1) and (2.3) as a function of w, gives the dependence 
g(q0) for the points of the arc (-o~, (z). Similarly, we find 8l, the argument of the point corresponding to 
the internal boundary of the left-hand section of the AD. 

From condition (2.4), it follows that 

x(q~ o) = x(g(Cpo) ) (2.5) 

where % is a point of the arc (-cq c 0. 
We find expressions for x(%) and x(g(%)) using Schwartz's formula [32] 

2 g  iq~ 
1 c , , e  +w d 

z(w) = -2-~i J YtCP)ei-T~_ w ~p 
o 

(2.6) 

We write it for the points of the unit circle w = e i'p° and separate out the real part to obtain 

2 ~  

1 r ( .ct qg-q%d x(qOo) = ~-~jy cp) g ~  qo 
o 

(2.7) 

We denote the imaginary part of the function, corresponding to the right-hand (left-hand) section of 
the AD, byyrq)(cp) and the imaginary part of the mapping function, corresponding to the upper (lower) 
boundary of the magnetosphere, byyt(b)(q0). Expression (2.7) then takes the form 

1 ~ ( )ct qo-qoOd x(CPo ) = ~-~l jy  ~ qo g ~  qo 
-0~ 

/ ¢ - ( 1  

0~ 

r ~ + a  2 ~ - o c  

I Yt(q~)ctg '~dqo + I Yt,(qo' c t g - ~  dcP l 

(2.8) 

The expression for x(g(%)) is written in similar manner (in the equality (2.8), it is sufficient to replace 
% by g(%)). 

We assume thatyr(q0) andyz(q0) are slowly varying functions, that is, for each chosen cO0, we will assume 
that 

y,r,l(Cp) ----- const(%) = Cr, l((PO ) 

This assumption enables us to move these functions out of the integrand. Then, by virtue of relations 
(2.5), on the equating x(%) and x(g(%)) we obtain an equation in the two constants Cr(%) and Ct(%). 
Since the problem is symmetric with respect to the origin of coordinates, we have 

Ct(%) = -Cr(%) (2.9) 

which reduces condition (2.5) to an equation in a single unknown for each value of %. Using expression 
(2.8), we then find the corresponding values of x(%). The pairs (x(%), C,.(q00)), where % ~ (~,., o0, give 
the position and shape of the right-hand section of the AD and the pairs (x(q00) , -Cr(q%)), where ~0 
(re - o~, 6l), give the position and shape of the left-hand section of the AD. 

An example of a calculation is shown in Fig. 3 where the shape of the left-hand section of the AD 
is shown for different scales along the abscissa and the ordinate. Note that the AD is almost planar, 
that is, the magnetic field does not have a large effect on the shape of the AD. 

The system of functions y(q~) has thereby been completely determined for all q0 ~ (0, 2re). Now, by 
making use of Schwartz's formula (2.6), we find the function z(w) in the whole circle ] w I ~< 1. Knowing 
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the potential F(w) and the mapping z(w) which converts the unit circle in the w plane into the 
magnetosphere in the z plane, we obtain the configuration of the magnetic field in the z plane. 

In order to return to dimensional variables, it is necessary to specify the values of the magnetic moment 
m0 and the pressure P0 of the interstellar gas on the boundary of the magnetosphere. To do this, we 
shall make use of existing data [5] and we choose m0 = 103° Gauss.cm 3 andp0 = 1.38 x 106 dyne/cm 2 
which corresponds to the parameters of a typical neutron star. 

The pattern of the field lines in the w and z planes for the values of the parameters ~ = re/6, 
Q = 1/2, V = re/4 is shown in Fig. 2 for the example. Note that the method which has been described 
enables one to obtain numerical estimates of the magnetic field strength at any point of the 
magnetosphere. 

3. D I S C U S S I O N  OF T H E  R E S U L T S  

Estimation of  the reliability o f  the solution. By varying the values of the three parameters ~, ~ and Q, 
it is possible to reduce the solution obtained to the results of other authors. 

A magnetosphere without an AD corresponds to the case when ~ = 0 and Q = 0, and, during the 
mapping, the whole of the auxiliary unit circle becomes the external boundary of the magnetosphere 
(Fig. 2). On directing the magnetic dipole upwards, that is, on putting ~t = n/2, we obtain a potential 
F which is identical with that considered previously in [30] for the corresponding case and a shape of 
the magnetosphere without an AD, calculated by the method of conformal mappings, which is also 
identical with that obtained by another method in [33]. 

Note that the parameters o~ and Q are interconnected. They can be non-zero or vanish simultaneously. 
Actually, the case when o~ ~ 0 corresponds to the existence of an AD. Since a real AD always possesses 
a magnetic field, the parameter Q, which characterizes this quantity, must be non-zero. This is reflected 
in formula (2.3) for the magnetic potential where, when one of the parameters ~ and Q vanishes, the 
other automatically disappears. 

The fact that the characteristic dimensions of the magnetosphere which have been obtained are in 
good agreement with the estimates obtained by others is evidence of the reliability of the solution 
presented. For instance, according to the estimates obtained in an analysis of observations of the neutron 
star 4U 1907 + 09 using the IXAE space probe, the star is surrounded by a magnetosphere with a 

8 9 characteristic radius r m ~ 0.4 x 109 cm and the AD begins at a distance rd - 10 - 10 cm from the star 
[15]. Results obtained for a standard neutron star, that is, for a star with a magnetic moment m0 = 103o 

3 6 2 Gauss.cm and a gas pressure on the boundary of the magnetosphere P0 = 1.38 x 10 dyne/cm (the 
data are taken from [5]) which give a characteristic size of the magnetosphere of r m ~- 0.6 x 109 cm and 
a distance from the star to the AD of rd = 4 x 108 cm, are presented on the right-hand side of Fig. 2. 

It can therefore be concluded that the reliability of the results obtained is confirmed by the available 
calculations and the observed data. Note that a list of known neutron stars which are similar to 4U 1907 
09, that is, a star to which the proposed model can be applied, is given in [15]. 

Investigation o f  the structure of  the magnetosphere. We will now consider the special features of the 
field within the magnetosphere. For simplicity, we shall consider the case when the magnetic axis of 
the star is perpendicular to the plane of the AD: ~ = r~/2. In this case, the structure of the magnetic 
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field becomes symmetrical about the Oy axis and the AD acquires a planar shape. The three version 
of the structure of the field shown in Fig. 4 correspond to three values of the parameter Q for a fixed 

= re/6 (from symmetry considerations, only the right-hand sides of the magnetospheres are shown). 
It is clear that the configuration of the field within the magnetosphere changes when there is an increase 
in the magnetic field of the AD. 

We will now consider the question of the arrangement and number of zero points of the magnetic 
field. These points play an important role in the acceleration of the particles in a plasma [31]. Calculations 
show that the magnetosphere contains two zero points, which lie in the plane of the AD. Depending 
on the ratio of the magnetic moment of the star and of the disc, the zero points can be located between 
the star and the AD (the right-hand part of Fig. 4), coincide with the internal edge of the AD (the middle 
part of Fig. 4), or lie in the AD (the left-hand part of Fig. 4). 

We will now determine for which values of the parameters ~ and Q a zero point coincides with the 
internal edge of the AD. It is obvious that the zero points of the field in the w plane correspond to the 
zero points in the z plane. In fact, the equality 

B = - i ( d F / ( d z ) ) *  = - i ( d F / ( d w ) d w / ( d z ) ) *  = 0 

follows from expression (2.1). The derivative dw/dz is now zero as a consequence of the conformality 
of the mapping. Consequently, the equality 

d F / ( d w )  = 0 (3.1) 

must be satisfied, which means that the coordinates Bu and B~ of the magnetic field in the w plane are 
equal to zero. The potential F in this plane has the analytical form (2.3), which is convenient for analysis. 
For the fixed value of ~ = rt/2, due to the symmetry of the magnetic field about the Oy axis in the auxiliary 
w plane, the point (1, 0) corresponds to the start of the neutral layer. On substituting these coordinates 
into system (3.1) and separating the real and imaginary parts, we obtain a system of two algebraic 
equations in the two variables a and Q. Its solution shows that a zero point of the field coincides with 
the internal edge of the AD if the parameters are chosen such that 

Q = sin 

We will now consider the question as to which the states shown in Fig. 4 will be the most suitable 
from an energy point of view. For this purpose, we will calculate the force induced by the magnetic 
field and acting on the internal edge of the AD, that is, we evaluate the integral of the Maxwell stress 
tensor Gn [34] 

) ) 0 = 4rt~, x -  B2 , "~YY = " ~ ,  y-- B2 , ( y x y  = ( yyx  = BxBy 

along a certain contour, which encompasses the neighbourhood of the internal edge of the AD. 
Numerical integration shows that, as would be expected, the forces acting along the Oy axis compensate 
one another in all three cases. 

At the same time, in the case of the versions corresponding to the left- and right-hand parts of 
Fig. 4, there is a force acting along the Ox axis which tends to repel the AD from the star. This force 
is only absent in the version corresponding to the middle part of Fig. 4. Hence, in the strong magnetic 
field approximation, that is, in the case when the magnetic force predominates over all other forces, 
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t he  s ta te  fo r  wh ich  a z e r o  p o i n t  o f  t h e  f ie ld  co inc ides  wi th  t h e  i n t e rna l  e d g e  o f  t he  A D  is t he  e q u i l i b r i u m  
state .  Th is  c o n c l u s i o n  is in a c c o r d  wi th  s imp le  ana ly t i ca l  so lu t ions  for  t h e  m a g n e t i c  f o r ce  ac t ing  on  the  
e d g e  o f  a c u r r e n t  layer  [35]. 
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